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Abstract. The α- andβ-relaxations in a disparate-size binary liquid near the glass transition
have been investigated within a mode-coupling theory. We focus our attention on theα- andβ-
peaks in the frequency-dependent susceptibility and their dependence on the concentrations of big
and small particles. For the 1:1 mixture of big and small particles (size ratio = 0.2), a large peak
appears in the susceptibility of the small particles in the frequency range of theβ-relaxation,
which corresponds to the fast relaxation of the small particles within the random potential
produced by the big particles. The intensity of this peak grows further as the concentration of
the small particles(c1) is decreased. For largec1, on the other hand, the peak becomes lower
than theα-peak and the susceptibility is similar to that of a one-component liquid.

1. Introduction

Diffusion of small particles in a random matrix is one of the interesting problems in
condensed matter physics. This problem is closely related to rapid hydrogen transfer in
amorphous metals, glassy ionic conductors, molecular diffusion in amorphous polymers
and so on. Recently we have extended the mode-coupling theory of glass transitions [1, 2]
to multi-component systems and applied it to a disparate-size binary hard-sphere mixture
to study the liquid–glass transition of the mixture as well as the delocalization of small
particles in a glassy matrix. In our previous papers [3, 4] we showed that for the diameter
ratio δ = σ1/σ2 = 0.2, the localization of the big particles occurs atη ∼= 0.52 corresponding
to the liquid–glass transition, while the small particles are localized atη ∼= 0.53, whereη is
the total packing fractionη = (π/6)n2σ

3
2 (1+c1δ

3/(1−c1)) andc1 = N1/N . The transition
at η ∼= 0.53 is not the normal liquid–glass transition but the localization–delocalization
transition within the random potential produced mainly by the big particles.

In this paper we extend the analysis to examine the density relaxation of the same
mixture in the liquid phase. We focus our attention on theα- andβ-peaks in the generalized
susceptibility and their dependence on the concentrationc1.

2. Theory

The theory is summarized as follows. The space and time variations of the partial density
relaxation functions

8ss ′(q, t) ∝
∑
i,j

〈
exp

{
−iq ·

[
r(s)
j (t) − r(s ′)

i (0)
]}〉
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Figure 1. The susceptibility spectra of the small particles (a) and the big particles (b) for
c1 = 0.5 at η = 0.504, 0.512, 0.516 and 0.518. Hereω−1

0 = [kBT /(m2σ
2
2 )]1/2 is the unit of

time in our numerical calculations.
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(s, s ′ = 1, 2 denoting particle species) are described by the 2× 2 matrix equation of motion

8̈(q, t) + �2(q) · 8(q, t) +
∫ t

0
dt ′ K(q, t − t ′) · 8̇(q, t ′) = 0 (1)

whereK(q, t) is the relaxation-kernel matrix;

Kss ′(q, t) = v2
s

ns ′V

∑
ll′

∑
k

kzuls(k)[kzul′s ′(k)8ll′(k, t)8ss ′(κ, t)

+ κzul′s ′(κ)8ls ′(k, t)8sl′(κ, t)] + 0ss ′(q)2δ(t) (2)

with abbreviationsns = Ns/V , v2
s = kBT /ms , kz = k · q/q, and κ = q − k. Here the

microscopic frequency�2
ss ′(q) = q2 v2

s [S(q)−1]ss ′ and uss ′(q) = −kBT {δss ′ − [S(q)−1]ss ′ }
are determined by the static structure factorsSss ′(q). The quickly decaying last term
in equation (2) (regular part) describes binary collision effects, while thek-integral
approximates multiple-collision processes of the dense liquid causing strong dynamical
feedback. The latter is crucial for the slow dynamics in the supercooled and glassy phases.
The coupled equations (1) and (2) are solved numerically by iteration. For the binary
hard-sphere mixture the static structure factor is supplied by the solution of the Percus–
Yevick equations in terms of analytic formula [5]. This most simple model for the static
structure of a hard-sphere mixture is known to become inadequate for size ratiosδ < 2
in combination with packing fractionsη1 ≈ η2, for which a phase separation will occur
[6]. However, in the calculations presented here, the ratio of the partial packing fraction is
η1/η2 = 0.9 × 10−3, 0.8 × 10−2 and 0.072 forc1 = 0.1, 0.5 and 0.9, respectively. Thus,
the system is away from the region of phase separation even for the largestc1, and we
consider the PY hard-sphere system an adequate model of a disparate-size binary liquid in
the parameter range studied.

Figure 2. The density relaxation function of the small particlesf11(q, t) for c1 = 0.1 (dashed
line), 0.5 (solid line) and 0.9 (chain line) atη = 0.516. The wavenumber isq = 7.05σ−1

2 .
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Figure 3. (a) The susceptibility ofχ ′′
11(q, ω) for c1 = 0.9 andη = 0.504, 0.512, 0.516 and

0.518. (b)χ ′′
11(q, ω) for c1 = 0.1 andη = 0.509, 0.513, 0.515 and 0.516. The wavenumber is

q = 7.05σ−1
2 .

3. Results

Figure 1 shows the susceptibilityχ ′′
ss(q, ω) for δ = 0.2 and c1 = 0.5 at q = 7.05σ−1

2
(the main peak ofS22(q)). The characteristics ofχ ′′

22(q, ω) are similar to those of a one-
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component liquid [7]; that is, it consists of a largeα-peak in the low-frequency regime and
a microscopic peak atω/ω0 ∼ 10, which is overdamped in the present model. Theβ-peak
is observed only atη = 0.518 with low intensity and it merges with the high-frequency
wing of the α-peak for largerη. In the susceptibility of the small particles, on the other
hand, we find a large peak at 10−1 < ω/ω0 < 1 with a shoulder at high frequencies.
This high-frequency shoulder arises from the microscopic oscillation corresponding to the
second term in equation (1). Although the large peak inχ ′′

11(q, ω) is expected to arise from
the β-process, the characteristics of the peak are different from those of theβ-peak found
in a one-component liquid in two ways; firstly, the intensity of the peak is much higher
than that of theα-peak, and secondly, the peak frequency is about two decades higher
than that of theβ-peak of the big particles. Therefore, we call the peak inχ ′′

11(q, ω) the
β ′-peak to distinguish it from theβ-peak of the big particles. Theβ ′-peak is considered
to arise from the fast relaxation of the small particles within the random potential which
is produced mainly by the big particles. Theα-peaks appearing in bothχ ′′

22(q, ω) and
χ ′′

11(q, ω) correspond to the decay of the random potential. Note that the diffusion constant
of the big particles near the transition pointη = 0.52 is about 105 times smaller than that
of the small particles [3]. Therefore, on the time-scale of the density relaxation of the small
particles, the big particles are almost frozen and produce an almost static random potential
which serves as a cage potential for the small particles.

Let us investigate thec1-dependence of theα- and β-relaxations. Figure 2 shows the
normalized density relaxation function

fss ′(q, t) = 8ss ′(q, t)/[8ss(q, t = 0)8s ′s ′(q, t = 0)]1/2

for c1 = 0.1, 0.5 and 0.9. The plateau in theβ-relaxation regime becomes lower asc1 is
decreased, which reflects the small values of the long-time limit off11(q, t) (Debye–Waller
factor) at low concentrationc1. (See figure 2 of reference [8].) Note thatf11(q, t) for
c1 = 0.1 is similar to the incoherent part of the density relaxation function of the small
particles [9]. In figure 3 we plotχ ′′

11(q, ω) at c1 = 0.9 and 0.1 for several values ofη. For
c1 = 0.9, the intensity of theα-peak is higher than that of theβ ′-peak andχ ′′

11(q, ω) is
similar to figure 1(b). This means that the system is like a one-component system of the
small particles whenc1 is large (as far as the number density is concerned) and the random
potential is produced by both the big and small particles. Forc1 = 0.1, on the other hand,
the system is like a one-component system of thebig particles. As a result, the behaviour
of the small particles is similar to that of a single impurity atom in a random potential and
the intensity of theα-peak becomes extremely low. These results are consistent with the
interpretation of the peaks given above. The difference inχ ′′

11(q, ω) amongc1 = 0.1, 0.5
and 0.9 originates from the different plateau values inf11(q, t) shown in figure 2.

4. Summary

In this paper we investigated theα- andβ-processes in a disparate-size binary liquid near the
glass transition. For a 1:1 mixture we observed a largeβ ′-peak inχ ′′

11(q, ω) corresponding
to the fast relaxation of the small particles within a random potential. Thisβ ′-peak grows
further and theα-peak becomes lower as the concentrationc1 is decreased. On the other
hand, the intensity of theβ ′-peak decreases for largec1 andχ ′′

11(q, ω) becomes similar to
χ ′′

22(q, ω). These results show that the dynamics of the small particles are greatly different
from what we find in a one-component system. This points out the necessity to treat the
multi-component theory when comparing the theoretical predictions with experimental data.
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